Vertex colorings without isolates

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex colorings without rainbow subgraphs

Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For graph F , we define the F -upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F . We present some results on this parameter for certain graph classes. The focus is on the case that F is...

متن کامل

Vertex Colorings without Rainbow or Monochromatic Subgraphs

This paper investigates vertex colorings of graphs such that some rainbow subgraph R and some monochromatic subgraph M are forbidden. Previous work focussed on the case that R = M . Here we consider the more general case, especially the case that M = K2.

متن کامل

Vertex colorings of graphs without short odd cycles

Motivated by the work of Nešetřil and Rödl on “Partitions of vertices”, we are interested in obtaining some quantitative extensions of their result. In particular, given a natural number r and a graph G of order m with odd girth g, we show the existence of a graph H with odd girth at least g and order that is polynomial in m such that every r-coloring of the vertices of H yields a monochromatic...

متن کامل

Vertex rainbow colorings of graphs

In a properly vertex-colored graphG, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P . If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring ofG. The minimum numbe...

متن کامل

Adjacent Vertex Distinguishing Edge-Colorings

An adjacent vertex distinguishing edge-coloring of a simple graph G is a proper edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. The minimum number of colors χa(G) required to give G an adjacent vertex distinguishing coloring is studied for graphs with no isolated edge. We prove χa(G) ≤ 5 for such graphs with maximum degree Δ(G) = 3 and prove χa(G) ≤ Δ(G) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1979

ISSN: 0095-8956

DOI: 10.1016/0095-8956(79)90020-0